

The LLM Stack: A
Practical Guide to
Understanding AI

By Uli Hitzel

July 2025

Version 0.1

© 2025 Uli Hitzel

This book is released under the Creative Commons
Attribution–NonCommercial 4.0 International license
(CC BY-NC 4.0).

You may copy, distribute, and adapt the material for
any non-commercial purpose, provided you give
appropriate credit, include a link to the license, and
indicate if changes were made. For commercial
uses, please contact the author.

Introduction: Why Layers Matter
If you’re reading this, you’ve probably used ChatGPT,
Claude, or another AI tool. Maybe you’ve been
amazed by what it can do. Maybe you’ve been
frustrated when it confidently told you something
completely wrong. Maybe you’re wondering if AI will
change your job, your industry, or the world.

Here’s the thing: most people interact with AI like
they’re pressing buttons on a magic box. They type
something in, get something out, and hope for the
best. When it works, great. When it doesn’t, they
shrug and blame “AI.”

But AI isn’t magic, and it’s not a single thing. What we
call “AI” today – specifically Large Language Models
(LLMs) – is actually a stack of technologies,
techniques, and tools working together.
Understanding this stack is like getting an X-ray
vision into how these systems actually work.

Why Should You Care?
Because knowing how something works gives you
power over it. When you understand the layers, you
can:

• Make better decisions about which AI tools to
use

• Understand why AI fails in certain ways (and
how to work around it)

• Spot the difference between hype and reality
• Have informed conversations about AI’s

impact on your work and life
• Build better solutions if you’re in a position to

influence AI adoption

The Six Layers
Think of modern AI systems like a building. You don’t
need to be an architect to live in one, but
understanding the basic structure helps you use it
better. Here are the six layers we’ll explore:

Layer 1: Foundation – The core mechanics. How AI
actually processes and generates text. This is the
engine room.

Layer 2: LLM Ecosystem – The landscape of
available models. Who makes them, what types
exist, and what makes them different.

Layer 3: Fine-Tuning – How generic models become
specialists. Taking a generalist AI and teaching it to
be an expert in your specific needs.

Layer 4: Interaction & Output Control – The steering
wheel and pedals. How we communicate with AI and
control what it produces.

Layer 5: Augmentation – Giving AI superpowers.
Connecting it to real-time data, tools, and actions in
the real world.

Layer 6: Evaluation & Monitoring – Quality control.
Making sure AI stays helpful, accurate, and safe over
time.

Who This Book Is For
This book is for anyone who wants to understand AI
beyond the headlines. You don’t need a computer
science degree. You don’t need to know how to code.
You just need curiosity and a willingness to look
under the hood.

Maybe you’re:

• A business leader making decisions about AI
adoption

• A professional wondering how AI will affect
your field

• A curious person who wants to understand
the technology shaping our future

• Someone who’s been using AI tools but wants
to use them better

What You Won’t Find Here
No mathematical formulas. No code samples. No
promises that AI will solve all your problems or dire
warnings that it will end the world.

What you will find is a clear, practical explanation of
how these systems actually work, illustrated with
analogies that stick and examples from real-world
use.

How to Read This Book
Each chapter covers one layer and builds on the
previous ones. You can read straight through for the
full picture, or jump to specific layers that interest
you most. Just know that the layers work together –
understanding their connections is as important as
understanding each piece.

Ready? Let’s start with the foundation and work our
way up.

Chapter 1: Foundation – The
Engine Room

How AI Actually Works

Let’s start with a confession: when most people talk
about “how AI works,” they either dive into
incomprehensible mathematics or hand-wave it
away as “basically magic.” We’re going to do neither.

Understanding the foundation of LLMs is like
understanding how a car engine works. You don’t
need to build one from scratch, but knowing the
basics helps you drive better, troubleshoot
problems, and avoid getting ripped off at the
mechanic.

Breaking Language into Lego Blocks: Tokens

Here’s the first surprise: AI doesn’t actually read
words the way you do. Instead, it breaks everything
down into smaller pieces called tokens.

Take the sentence: “The dog barked loudly.”

You see four words. The AI might see something like:

• “The”
• “dog”
• “bark”
• “ed”
• “loud”
• “ly”

Why does it do this? Because language is messy.
Consider the word “unbelievable.” Should AI learn
this as one unit, or understand it as “un-believe-
able”? By breaking words into common chunks, AI
can handle new words it’s never seen before.
Encounter “unsingable” for the first time? No
problem – it knows “un,” it knows “sing,” it knows
“able.”

This process is called tokenization, and it’s the first
step in how AI processes any text you give it. When AI
generates a response, it’s actually generating these
tokens one by one, then assembling them back into
readable text.

There’s even a special token that acts like a period at
the end of a sentence – the End-of-Sequence (EOS)
token. When the AI generates this, it knows to stop
talking. Without it, AI would ramble on forever like
that relative at family dinners.

The Transformer: Where the Magic Happens

At the heart of every modern LLM is something called
a Transformer. Despite the sci-fi name, it’s not a
robot in disguise. It’s a design that solved a
fundamental problem: understanding how words
relate to each other across long distances in text.

Consider this sentence: “The cat, which had been
sleeping on the warm windowsill all afternoon while

the rain pattered against the glass, suddenly
jumped.”

What jumped? The cat. But there are 20 words
between “cat” and “jumped.” Earlier AI systems
would lose track. Transformers solved this with a
mechanism called attention.

Attention: The Cocktail Party Effect

Imagine you’re at a busy cocktail party. Dozens of
conversations are happening simultaneously, but
you can focus on the one person talking to you while
still being aware of the overall atmosphere. That’s
attention.

For each word in a sentence, the Transformer doesn’t
just look at neighboring words. It simultaneously
considers every other word and decides which ones
are most relevant. It’s asking, “To understand
‘jumped,’ which other words in this sentence matter
most?” The answer: “cat” matters a lot, “windowsill”
matters some, “pattered” matters very little.

This happens through a clever system where each
word generates three things:

• A Query: “What information am I looking for?”
• A Key: “What information do I have to offer?”
• A Value: “Here’s my actual content”

Words with matching Queries and Keys pay more
attention to each other. It’s like each word is both

broadcasting what it needs and advertising what it
can provide.

Multi-Head Attention: Multiple Perspectives

Here’s where it gets interesting. The Transformer
doesn’t just do this attention process once. It does it
multiple times in parallel, each from a different
“perspective.”

Think of it like analyzing a movie scene. One person
might focus on the dialogue, another on the
cinematography, another on the music. Each
perspective captures something different. Similarly,
one “attention head” might focus on grammar,
another on meaning, another on tone. Combining all

these perspectives gives the AI a rich, nuanced
understanding of text.

Position Matters

Since the Transformer looks at all words
simultaneously, it needs another trick to remember
word order. After all, “Dog bites man” and “Man bites
dog” use the same words but mean very different
things.

The solution: positional embeddings. Think of these
as seat numbers at a theater. Each word gets tagged
with its position, so even though all words are
processed at once, the system knows which came
first, second, third, and so on.

The Scale of Knowledge: Parameters

When you hear that an LLM has “7 billion
parameters” or “175 billion parameters,” what does
that actually mean?

Parameters are essentially the AI’s learned
knowledge – millions or billions of numerical values
that encode patterns, facts, and relationships the
model discovered during training. Think of them as
connections in a vast network, each holding a tiny
piece of information.

More parameters generally means:

• More capacity to learn complex patterns

• Better performance on diverse tasks
• Higher costs to train and run
• More memory and processing power needed

But it’s not just about size. A well-trained 7 billion
parameter model can outperform a poorly trained 70
billion parameter model. Quality matters as much as
quantity.

Making AI Practical: Quantization

Here’s a problem: these billions of parameters take
up enormous amounts of computer memory. A large
model might need specialized hardware that costs
tens of thousands of dollars to run.

Enter quantization – a technique that’s like
compressing a high-resolution photo. Instead of
storing each parameter as a very precise number
(like 3.14159265…), we round it to something simpler
(like 3.14). The model becomes smaller and faster,
with only a tiny loss in quality.

This is why you can now run decent AI models on
your laptop or phone instead of needing a
supercomputer.

How AI Generates Responses: The Two-
Phase Process

When you send a prompt to an AI, two distinct
phases happen:

Phase 1: Prefill (Reading)

The AI rapidly processes your entire prompt, building
up its understanding of what you’re asking. It’s like
speed-reading your question to grasp the full context
before starting to answer.

Phase 2: Decode (Writing)

Now the AI generates its response, one token at a
time. Each new token is predicted based on your
original prompt plus everything it has already written.
It’s like writing a sentence where each new word
must fit perfectly with everything that came before.

This is why AI responses appear word by word rather
than all at once – it’s literally figuring out what to say
next as it goes.

The KV Cache: AI’s Short-Term Memory

During the decode phase, the AI faces a challenge.
To generate each new token, it needs to consider all
previous tokens. Without optimization, it would have
to re-read everything from scratch for each new word
– incredibly inefficient.

The solution is the KV Cache (Key-Value Cache). It
stores important calculations from previous tokens
so they can be reused. It’s like taking notes while
reading a long document – instead of re-reading the
whole thing to remember a detail, you check your
notes.

This seemingly technical detail is why AI can
maintain long conversations efficiently without
slowing to a crawl.

Putting It All Together

These foundation elements – tokens, transformers,
attention, parameters, quantization, and inference
mechanics – work together to create what we
experience as AI. Text comes in, gets broken into
tokens, flows through layers of attention
mechanisms guided by billions of parameters, and
new tokens are generated one by one until a
complete response emerges.

It’s not magic. It’s not human-like consciousness.
It’s a sophisticated pattern-matching and generation
system that has learned from vast amounts of text to
produce remarkably coherent and useful outputs.

Understanding this foundation helps explain both
AI’s impressive capabilities and its limitations. It can
process and generate text with astounding skill
because that’s what it’s designed to do. But it’s not
“thinking” in any human sense – it’s performing

incredibly complex calculations to predict the most
likely next token based on patterns it has learned.
When that prediction game drifts from the real world,
we perceive the output as hallucination. In a poem or
a story this creativity is welcome; in a facts-and-
figures report it becomes a bug.

In the next chapter, we’ll explore the landscape of
different models built on this foundation and why you
might choose one over another.

Chapter 2: The LLM Ecosystem –
Navigating the Model Zoo

A Moving Target

Here’s a warning right up front: by the time you read
this, at least half of what I’m about to tell you will be
outdated. New models drop weekly. Today’s
breakthrough is tomorrow’s old news. Companies
leapfrog each other constantly.

But that’s exactly why understanding the ecosystem
matters more than memorizing model names. It’s
like learning to recognize car types rather than
memorizing every model BMW ever made. The
specifics change; the patterns remain.

From Wild to Tamed: The Evolution of LLMs

Let me tell you a story about how we got here.

The Wild West: Base Models

The first powerful LLMs were what we call “base
models” – raw pattern-matching engines trained on
vast amounts of internet text. Imagine teaching
someone to speak by having them read every book,
article, and forum post ever written, with no guidance
on what’s appropriate or helpful.

These models were incredibly capable but
completely unpredictable. Ask them to write a poem,
and they might give you beautiful verse – or launch
into a racist tirade they picked up from some dark
corner of the internet. Request help with code, and
they might provide a brilliant solution – or confidently
explain how to build a bomb.

Base models are like brilliant but feral minds. They
absorbed everything without judgment: Shakespeare
and spam emails, scientific papers and conspiracy
theories, helpful advice and harmful content. All
patterns were equal to them.

The Training Wheels: Instruction-Tuned Models

The AI companies quickly realized that releasing
these wild models to the public was like giving
everyone a chainsaw without safety features. Enter
“instruction tuning.”

This is where models learn not just to complete text,
but to follow instructions helpfully and safely. It’s like
taking that feral genius and sending them to finishing
school. Through careful training on examples of
helpful responses and human feedback, these
models learned to:

• Answer questions rather than just ramble
• Refuse harmful requests
• Admit when they don’t know something
• Stay on topic and be genuinely useful

This gave us the ChatGPTs and Claudes we know
today – still occasionally wrong or weird, but
generally trying to be helpful rather than just spitting
out whatever patterns they’ve seen.

The Thinkers: Reasoning Models

The latest evolution is “reasoning models” – AIs that
don’t just respond but actually work through
problems step-by-step. Models like OpenAI’s o3
series or Google’s latest offerings can “think out
loud,” showing their work like a math student.

Instead of pattern-matching their way to an answer,
they can break down complex problems, check their
logic, and even correct their own mistakes. It’s the
difference between someone who memorized
answers and someone who actually understands the
subject.

The Current Landscape: Who’s Who in the
Zoo

As of early 2025, here’s the lay of the land (with the
caveat that it’s probably already changed):

OpenAI: The Pioneer Losing Its Lead

OpenAI burst onto the scene with ChatGPT and held
the crown for years. Their GPT-4o remains a
workhorse – reliable, capable, widely supported.

Their new o3 reasoning model shows impressive
capabilities for complex problem-solving.

But here’s the thing: they’re no longer the obvious
choice. The competition has caught up and, in some
areas, surpassed them. It’s like being the first
smartphone maker – revolutionary at first, but soon
everyone has one.

Google: The Sleeping Giant Awakens

Google is emerging as a serious force. Their Gemini
2.5 Pro and Flash models are genuinely impressive –
fast, capable, with massive context windows that
dwarf the competition. They can hold entire books in
memory while chatting with you.

What’s clever is their two-pronged approach:

• Closed models (Gemini): Top-tier capabilities
available through their services

• Open models (Gemma 3): Smaller but
powerful models you can run yourself

This gives users choice: maximum capability with
cloud services, or full control with open models.

Anthropic: The Safety-Conscious Competitor

Anthropic’s Claude models (Opus 4, Sonnet 4) have
won a devoted following, especially among
developers and writers. They’re known for:

• Exceptional writing ability
• Strong safety features without being

annoyingly preachy
• Impressive reasoning capabilities
• Huge context windows for handling long

documents

Claude often feels more “thoughtful” in its
responses, less likely to hallucinate confidently.

Meta: The Open-Source Champion

Meta (Facebook) deserves enormous credit for
releasing powerful models completely open. Their
LLaMA series democratized AI in a way that forced
everyone else to reconsider their closed approaches.
You can download these models, modify them, run
them on your own hardware – complete freedom.

Mistral: The European Contender

Mistral AI emerged from nowhere to produce
genuinely competitive models, proving you don’t
need Silicon Valley billions to play this game. They
offer both open and closed models, often punching
above their weight class.

Open vs. Closed: The Great Divide

The ecosystem splits into two camps:

Closed-Source Models

• You access them through APIs or web
interfaces

• The company controls everything
• Usually more powerful and constantly

updated
• You’re renting, not owning
• Your data goes to their servers

Open-Source Models

• Download and run them yourself
• Complete control and privacy
• Usually smaller and less capable
• You own it forever
• Requires your own hardware

It’s like choosing between Netflix (closed) and buying
DVDs (open). Each has its place.

The Reality Check

Here’s what really matters: we’ve reached a point
where multiple companies offer models that are
“good enough” for most tasks. The fierce
competition means:

• Prices keep dropping
• Capabilities keep improving

• You have real choices
• No single company can dominate

The best model for writing might be different from the
best model for coding, which is different from the
best model for analysis. OpenAI no longer
automatically wins. Google might be better for long
documents. Claude might write more naturally. An
open model might be perfect for your privacy-
sensitive application.

What This Means for You

Stop looking for “the best” model. Start thinking
about:

• What specific task do you need to
accomplish?

• How sensitive is your data?
• What’s your budget?
• Do you need cutting-edge capabilities or is

“good enough” actually good enough?

The ecosystem has matured from “OpenAI or
nothing” to a rich marketplace where you can choose
based on your actual needs rather than defaulting to
whoever was first or loudest.

In the next chapter, we’ll explore how these general-
purpose models can be transformed into specialists
through fine-tuning – turning a generalist doctor into
a heart surgeon.

Chapter 3: Fine-Tuning – From
Generalist to Specialist

Teaching Old Dogs New Tricks

Remember when you learned to drive? You didn’t
start from scratch learning what wheels were or how
roads work. You took your existing knowledge of the
world and added a specific new skill on top. That’s
fine-tuning.

The LLMs we discussed in Chapter 2 are like brilliant
university graduates – they know a bit about
everything but aren’t experts in anything specific.
Fine-tuning is like sending them to medical school,
law school, or apprenticing them to master
craftspeople. They keep all their general knowledge
but gain deep expertise in particular areas.

Why Fine-Tune? The Limits of Jack-of-All-
Trades

Base LLMs are impressive generalists. They can write
poetry, explain quantum physics, and debug code –
all reasonably well. But “reasonably well” might not
cut it for your needs.

Maybe you need an AI that:

• Writes in your company’s specific tone and
style

• Understands your industry’s jargon and
regulations

• Answers questions about your proprietary
products

• Follows your organization’s unique
procedures

You could try to squeeze all this into a prompt every
single time (“You are a customer service agent for
ACME Corp, established in 1887, specializing in
roadrunner-catching equipment…”). But that’s like
reminding a doctor what medicine is before every
patient. Inefficient and limiting.

Fine-tuning bakes this specialized knowledge directly
into the model. It’s the difference between a tourist
with a phrasebook and someone who actually
speaks the language.

The Full Treatment: Complete Fine-Tuning

The most thorough approach is full fine-tuning. You
take an entire pre-trained model – all its billions of
parameters – and continue training it on your
specialized data.

Imagine you have a master chef who knows
thousands of recipes. Full fine-tuning is like having
them spend months in Japan, not just learning
recipes but transforming their entire approach to
cooking. Every technique they know gets adjusted
through a Japanese lens. They’re still a master chef,
but now they’re specifically a master of Japanese
cuisine.

The results can be spectacular. The model doesn’t
just memorize new information; it fundamentally
shifts its “thinking” toward your domain. But here’s
the catch:

The Costs:

• Requires massive computational power
(think: renting a supercomputer)

• Needs substantial amounts of high-quality
training data

• Takes significant time (days or weeks)
• The resulting model is just as large as the

original

For most organizations, full fine-tuning is like buying
a private jet when you just need to visit grandma
occasionally. Powerful, but overkill.

The Smart Shortcuts: Parameter-Efficient
Fine-Tuning (PEFT)

This is where things get clever. What if instead of
retraining the entire model, we could achieve 95% of
the results by training just 1% of it?

LoRA: The Post-It Note Approach

LoRA (Low-Rank Adaptation) is the most popular
shortcut. Instead of changing the original model, it
adds small “adapter” modules – like putting Post-It
notes on pages of a textbook.

Think of it this way: you have an encyclopedia.
Instead of rewriting entire articles, you stick Post-It
notes with updates and specialized information.
When you read about “customer service,” the Post-It
note says “but at ACME Corp, always mention our
roadrunner guarantee.”

The benefits are enormous:

• Training is 10-100x faster
• Requires far less computational power
• The “adapters” are tiny files (megabytes

instead of gigabytes)

• You can swap different adapters for different
tasks

• The original model remains untouched
QLoRA: The Economy Version

QLoRA goes even further by compressing the original
model while adding adapters. It’s like having a pocket
encyclopedia with Post-It notes – smaller, faster, but
still effective.

Teaching Models to Follow Orders:
Instruction Fine-Tuning

Remember how base models were wild and
unpredictable? Instruction fine-tuning is specifically
about teaching models to be helpful assistants
rather than just text completers.

This involves training on thousands of examples like:

• Human: “Summarize this article about
climate change”

• Assistant: [Provides a clear, concise
summary]

• Human: “Write me a harmful computer virus”
• Assistant: “I can’t help with creating

malicious software, but I’d be happy to
explain computer security concepts…”

It’s like the difference between someone who knows
many facts and someone who knows how to be

genuinely helpful in conversation. The model learns
not just what to say, but how to be a good
conversational partner.

The Secret Sauce: Data Quality

Here’s the truth that every AI company knows: fine-
tuning is only as good as your data. You can have the
best model and techniques, but if you train it on
garbage, you get a garbage specialist.

Good fine-tuning data is:

• Relevant: Directly related to your use case
• Accurate: No errors or misinformation
• Diverse: Covers various scenarios you’ll

encounter
• Clean: Well-formatted and consistent
• Substantial: Enough examples to learn

patterns (think thousands, not dozens)

It’s like teaching someone to cook. You need good
recipes (accurate), for dishes they’ll actually make
(relevant), covering breakfast, lunch, and dinner
(diverse), written clearly (clean), and enough of them
to build real skill (substantial).

The Reality of Fine-Tuning

Let me be honest about when fine-tuning makes
sense:

Fine-tune when:

• You have a specific, repeated use case
• General models consistently fall short
• You have high-quality specialized data
• The task is central to your business
• You need consistent, specific behavior

Don’t fine-tune when:

• You’re still figuring out what you need
• A good prompt gets you 90% there
• You don’t have quality data
• The use case keeps changing
• Budget is tight

Many organizations jump to fine-tuning too quickly.
It’s like buying a custom-tailored suit before you’ve
figured out your style. Sometimes a good off-the-rack
option (base model) with minor adjustments (good
prompting) is all you need.

The Fine-Tuning Spectrum

Think of model customization as a spectrum:

1. Prompting: Just asking better questions (no
training required)

2. Few-shot prompting: Showing examples in
your prompt

3. RAG (coming in Chapter 5): Connecting to
your database

4. Light fine-tuning: Small adjustments with
LoRA

5. Heavy fine-tuning: Significant specialization
6. Full fine-tuning: Complete transformation
7. Training from scratch: Building your own

model (almost never worth it)

Most needs are met somewhere in the middle of this
spectrum. The art is finding the sweet spot for your
specific situation.

A Practical Example

Let’s say you run a medical clinic and want an AI
assistant. Here’s how different approaches might
work:

Base model: “Tell me about diabetes”

• Response: Generic Wikipedia-style
information

Well-prompted model: “You are a medical assistant
at a family clinic. Explain diabetes to a newly
diagnosed patient.”

• Response: More appropriate tone and content

Fine-tuned model: Trained on your clinic’s
protocols, patient communication guidelines, and
local health resources

• Response: Uses your clinic’s specific
approach, mentions your diabetes
management program, maintains your
preferred communication style

The fine-tuned model doesn’t just know about
diabetes – it knows how YOUR clinic talks about
diabetes.

The Bottom Line

Fine-tuning is powerful but not magical. It’s a tool for
creating specialist AIs when generalists aren’t
enough. But like any tool, it’s only worth using when
the job actually calls for it.

Most organizations benefit more from learning to use
general models effectively than rushing to create
specialized ones. Master the basics first, then
specialize when you have a clear need and good data
to support it.

In our next chapter, we’ll explore how to actually
communicate with these models – fine-tuned or not –
and control their outputs effectively.

Chapter 4: Interaction & Output
Control – Driving the AI

Beyond the Chat Box

Let’s be honest: you probably started your AI journey
with ChatGPT, Claude, or Gemini. You typed
something in a box, hit enter, and magic happened.
When it worked well, you were amazed. When it gave
you garbage, you shrugged and tried again.

These apps are like automatic transmission cars –
smooth, convenient, and they hide all the
complicated stuff. That’s great for getting started, but
terrible for understanding what’s actually happening
or getting consistent results.

This chapter is about looking under the hood. Not
because you need to become a mechanic, but
because understanding the controls gives you power.
It’s the difference between hoping for good results
and knowing how to get them.

The Convenience Trap

ChatGPT, Claude.ai, and Gemini are marvels of user
experience. They’ve packaged incredibly complex
technology into something your grandma can use.
But that packaging hides crucial details:

• Which model version are you actually talking
to? (They switch it without telling you)

• What invisible instructions is it following?
(Every app adds hidden “system prompts”)

• How is it deciding to search the web or
analyze your file?

• What safety filters are altering its responses?
• Why does the same prompt give different

results at different times?

It’s like driving a car where the steering wheel
sometimes controls the wheels, sometimes the
radio, and you’re never quite sure which. Frustrating
when you need precision.

How You Really Talk to AI: APIs

Behind every chat interface is an API (Application
Programming Interface). Think of it as AI’s phone

number – a direct line that bypasses all the
packaging.

When you use an API, you’re in control:

• You choose the exact model
• You set all the parameters
• You see exactly what goes in and what comes

out
• You pay for what you use, not a monthly

subscription
• No invisible middleman changing things

It’s like the difference between ordering through a
waiter (who might interpret your order) and walking
directly into the kitchen to talk to the chef.

The Price of Control: APIs require a bit more
technical setup. You need an API key (like a
password), and you typically interact through code or
specialized tools. But the payoff is enormous –
consistent, predictable results.

The Art of Asking: Prompt Engineering

“Prompt engineering” sounds fancy, but it’s really
just learning to communicate clearly with something
that takes you very literally. It’s like talking to a
brilliant but extremely literal foreign exchange
student.

Zero-Shot: Just Ask

This is what most people do – throw a question at the
AI and hope:

• “Write me a cover letter”
• “Explain quantum physics”
• “Fix this code”

Sometimes it works great. Sometimes it’s completely
off base. You’re rolling the dice.

Few-Shot: Show, Don’t Just Tell

This is where things get interesting. Instead of just
asking, you provide examples:

“Convert these city names to country codes:

• New York -> US
• London -> UK
• Tokyo -> JP

Now do: Paris ->”

The AI sees the pattern and follows it. It’s like
teaching by demonstration rather than explanation.
Suddenly, your success rate jumps from 60% to 95%.

The Advanced Techniques That Actually Matter

Chain-of-Thought (CoT):

Add “Let’s think step by step” or “Show your
reasoning” to complex questions. It forces the AI to
work through problems methodically instead of
jumping to conclusions. It’s like the difference
between a student guessing an answer and showing
their work.

Role Playing:

“You are an experienced Python developer reviewing
junior code” works better than “check this code.” It
activates relevant patterns in the model’s training.
But don’t go overboard – “You are the world’s
greatest genius” doesn’t actually make it smarter.

Structure Templates:

Instead of free-form requests, provide clear
structure: - “Analyze this text for: 1) Main argument 2)
Supporting evidence 3) Potential weaknesses”

System Prompts: The Invisible Hand

Every chat app has hidden system prompts that
shape the AI’s personality and behavior. ChatGPT
might have something like: “You are a helpful,
harmless, honest assistant. Never generate harmful
content. Be concise but thorough…”

When you use APIs, YOU write these rules. Want an
AI that’s more creative? More cautious? More
technical? You control it all. It’s like the difference

between buying a pre-seasoned meal and seasoning
it yourself.

The Control Panel: Output Parameters

Remember those hidden controls in chat apps?
Here’s what’s actually happening:

Temperature: The Creativity Dial

Temperature controls randomness in responses:

• Low (0.1-0.3): Predictable, focused, “by the
book” – great for facts, analysis, code

• Medium (0.5-0.7): Balanced – good for
general tasks

• High (0.8-1.0+): Creative, surprising,
sometimes wild – great for brainstorming,
fiction

ChatGPT probably runs around 0.7-0.8. But what if
you need 0.1 precision for financial analysis? Too bad
– you can’t change it. With APIs, you can.

Top-P: The Vocabulary Filter

While temperature affects how wild the AI gets, Top-
P affects how many different words it considers.
Lower values make it stick to common, safe choices.

Higher values let it explore unusual words and
phrases.

Max Length: The Brake Pedal

Chat apps decide how long responses should be.
Sometimes you want a paragraph and get an essay.
Sometimes you need detail and get a summary. With
direct control, you set exact limits.

Stop Sequences: The Emergency Brake

These are phrases that make the AI immediately stop
generating. Useful for structured outputs or
preventing rambling. Chat apps use these invisibly –
you might want different ones.

The Context Window: AI’s Working Memory

Every model has a context window – how much text it
can “see” at once. It includes:

• Your system prompt
• The conversation history
• The current question
• The response it’s generating

Think of it as the AI’s desk. Once it’s full, older stuff
falls off. This is why ChatGPT sometimes “forgets”
things from earlier in long conversations.

Chat apps manage this automatically (often badly).

When you have control, you can:

• Prioritize what stays in memory
• Summarize old content to save space
• Reset strategically to maintain performance

The Reality Check

Here’s what chat apps don’t want you to know:
they’re making dozens of decisions for you every time
you hit enter. Usually, those decisions are fine. But
when you need specific results, “usually fine” isn’t
good enough.

It’s like Instagram filters versus professional photo
editing. Filters are convenient and often look great.
But when you need specific results, you need actual
controls.

When to Graduate from Chat Apps

Stay with chat apps when:

• You’re exploring and learning
• Casual use is fine
• Inconsistency doesn’t matter
• You don’t want technical complexity

Move beyond them when:

• You need consistent, reliable results
• You’re building something that depends on AI

• Cost matters (APIs are often cheaper for
heavy use)

• You need specific behaviors or outputs
• Privacy and control are crucial

The Path Forward

Don’t feel bad about using ChatGPT – it’s an amazing
tool. But recognize it for what it is: training wheels.
Useful for learning to ride, limiting when you want to
really move.

Understanding these controls – APIs, prompting,
parameters, context – isn’t about becoming a tech
wizard. It’s about graduating from hoping AI does
what you want to knowing how to make it do what
you need.

In the next chapter, we’ll explore how to break AI’s
biggest limitation: its inability to access current
information or take action in the real world. Get ready
to give your AI superpowers.

Chapter 5: Augmentation –
Breaking Free from AI’s Bubble

The Genius in a Library with No Books

Large Language Models have an inherent limitation
that might surprise you. During training, they absorb
vast amounts of information from their training data,
but once that training ends, their knowledge
becomes frozen in time. A raw LLM has no way to
access new information, check current facts, or
interact with the real world. It exists in a bubble,
limited to what it learned before its training cutoff
date.

This creates an interesting paradox. We have these
incredibly capable systems that can discuss
complex topics, write code, and solve problems, but

they can’t tell you today’s weather, check your email,
or look up the latest stock prices. When faced with
questions about recent events, a raw LLM will either
honestly admit it doesn’t know or, more
problematically, generate plausible-sounding but
completely fabricated information. Those
fabrications are classic hallucinations: the model
has no pathway to fresh data, so it fills the gap with
its best statistical guess.

The chat applications we use daily have already
solved many of these limitations, though they don’t
always make it obvious how. When you ask ChatGPT
about current events, it might seamlessly search the
web and incorporate those results into its response.
But this raises important questions about control
and transparency that we need to understand.

The Search Engine Lock-In

The major AI platforms have made specific choices
about how to augment their models with real-world
information, and these choices directly affect your
experience. ChatGPT partners with Microsoft and
uses Bing for web searches. Gemini naturally
integrates with Google Search. Claude has partnered
with Brave. These aren’t random pairings – they
reflect business relationships and strategic
decisions.

Each search engine has its own strengths and
characteristics. Google might excel at finding

academic papers, Bing might have better integration
with Microsoft’s enterprise tools, and Brave might
prioritize privacy-conscious results. The search
engine fundamentally shapes what information the AI
can access and how it understands current events.

When you build your own AI stack, you gain the
freedom to choose your information sources based
on your actual needs. You might use Google for
general queries but connect to specialized
databases for industry-specific information. You
could prioritize privacy-focused search engines for
sensitive queries or integrate directly with your
organization’s internal search systems. This flexibility
becomes crucial when you need reliable, consistent
results for specific use cases.

Adding Context: The Foundation of
Augmentation

The simplest form of augmentation is directly
providing relevant information to the AI within your
prompt. This might seem basic, but it’s remarkably
effective for many use cases. When you paste a
document into ChatGPT and ask questions about it,
you’re manually augmenting the AI’s knowledge with
specific, relevant information.

This approach has clear advantages. It’s simple,
requires no technical setup, and gives you complete
control over what information the AI sees. You know

exactly what context the AI is working with because
you provided it yourself. For analyzing specific
documents, summarizing meetings, or working with
proprietary information, this manual approach often
works perfectly well.

The limitations become apparent as scale increases.
Context windows, though growing larger, still have
limits. You can’t paste an entire book or database
into a prompt. Finding and selecting the relevant
information requires manual effort. And if you need
to regularly work with large document collections,
copying and pasting quickly becomes impractical.

RAG: Automated Context at Scale

Retrieval-Augmented Generation (RAG) automates
and scales the process of providing relevant context.
Instead of manually finding and inserting
information, RAG systems automatically search
through document collections to find the most
relevant pieces for any given query.

The process works through a clever combination of
technologies. First, all your documents are
processed and converted into mathematical
representations called embeddings. These
embeddings capture the semantic meaning of text in
a way that computers can efficiently search. When
you ask a question, that question gets converted into
the same mathematical format. The system then
finds documents with the most similar embeddings –

essentially finding content that’s semantically
related to your query.

The beauty of this approach lies in its seamlessness.
From the AI’s perspective, it simply sees relevant
context appearing in its prompt. From your
perspective, the AI can suddenly answer questions
about documents it has never seen before. A
customer service AI can reference your entire
product manual, a research assistant can search
through thousands of papers, or a legal AI can cite
relevant cases – all without any manual intervention.
By grounding answers in retrieved passages, RAG
slashes hallucination risk; the model has concrete
text to quote instead of guessing.

RAG does have its complexities. The quality of
responses depends heavily on the retrieval
component finding truly relevant information.
Different chunking strategies (how documents are
split up) can dramatically affect results. And there’s
an art to balancing how much context to retrieve –
too little and the AI lacks necessary information, too
much and important details get lost in the noise.

Function Calling: From Thinker to Doer

While RAG gives AI access to information, function
calling gives it the ability to take actions. This
transforms AI from a conversational partner into an
actual assistant that can interact with other systems
and tools on your behalf.

Functions are essentially pre-defined capabilities
you give to the AI. These might include checking
weather, sending emails, querying databases,
running calculations, or interacting with any API-
accessible service. The AI learns not just what these
functions do, but when and how to use them
appropriately.

The implementation is elegantly simple. When the AI
determines it needs to use a function, it generates a
special response indicating which function to call
and with what parameters. The system executes that
function and returns the results to the AI, which then
incorporates that information into its response. From
the user’s perspective, the AI seamlessly accesses
real-world information or performs actions as part of
natural conversation.

This capability enables remarkably sophisticated
behaviors. An AI assistant can check multiple data
sources, perform calculations on the results, and
synthesize everything into a coherent response. It
can book appointments after checking calendars,
send follow-up emails after meetings, or update
databases based on conversational instructions. The
AI becomes an orchestrator, coordinating multiple
tools to accomplish complex tasks.

Agent Frameworks: Coordinating Complex
Workflows

Agent frameworks take function calling to its logical
conclusion, enabling AI to tackle multi-step
processes that require planning, decision-making,
and error recovery. While simple function calling
handles straightforward tool use, agents can manage
complex workflows that might involve dozens of
steps and multiple decision points.

These frameworks provide essential capabilities for
complex tasks. Planning systems help AI break down
high-level goals into actionable steps. Memory
management maintains context across long
workflows. Error handling ensures graceful recovery
when individual steps fail. Tool selection algorithms
choose the right capability for each situation. And
reflection mechanisms allow the AI to evaluate its
progress and adjust strategies as needed.

Consider a request like “Analyze our competitor’s
recent product launches and prepare a market
positioning report.” An agent would break this down
into subtasks: identifying competitors, searching for
recent product announcements, analyzing features
and pricing, comparing with your own products, and
formatting findings into a report. At each step, it
makes decisions about which tools to use, evaluates
the quality of information gathered, and adjusts its
approach based on what it finds.

MCP: The Universal Standard

Anthropic’s Model Context Protocol (MCP)
represents a different philosophy for augmentation.
Rather than building proprietary connections to
specific services, MCP creates an open standard for
how AI systems connect to any tool or data source.
This approach promotes interoperability and reduces
vendor lock-in.

MCP standardizes the entire interaction pattern
between AI and external tools. It defines how tools
describe their capabilities, how AI systems request
tool usage, how data flows back and forth, and how
errors are handled. Any tool built to the MCP
standard works with any MCP-compatible AI system,
creating a true ecosystem rather than isolated
integrations.

This standardization matters because it changes the
economics of AI augmentation. Instead of every AI
provider building custom integrations with every
possible tool, developers can build once to a
standard. Instead of being locked into a specific AI
provider’s ecosystem, organizations can switch
between providers while maintaining their tool
integrations. The result is more innovation, better
tools, and greater flexibility for everyone.

Building Your Own Stack: Architecture
Decisions

When you move beyond pre-packaged chat
applications to build your own augmented AI system,
you face important architectural decisions. Each
choice involves tradeoffs between capability,
complexity, cost, and control.

Your choice of base LLM affects everything else.
More capable models handle complex augmentation
better but cost more. Some models have better
function calling support than others. Context window
size determines how much retrieved information you
can work with. You might even use different models
for different parts of your system – a powerful model
for complex reasoning but a faster, cheaper model
for simple extractions.

Search and retrieval infrastructure requires careful
consideration. Vector databases for semantic search
work well for unstructured documents. Traditional
databases remain better for structured queries. You
might need both, plus specialized search engines for
web content. The retrieval strategy – how you chunk
documents, generate embeddings, and rank results –
significantly impacts quality.

Tool integration approaches vary from simple to
sophisticated. Direct API integrations offer maximum
control but require more development. Standard

protocols like MCP reduce development effort but
might not cover all use cases. Some tools work
better as functions, others as separate services. The
right mix depends on your specific needs and
constraints.

The Reality of Augmented AI

Building augmented AI systems involves navigating
tradeoffs and managing complexity. What works well
today includes RAG for document search, simple
function calling for defined tasks, web search
integration for current information, and basic multi-
step workflows for common processes. These
capabilities are mature enough for production use
with proper implementation.

Current challenges include maintaining context
across complex workflows, handling errors gracefully
in multi-step processes, managing costs when
operations require multiple API calls, and ensuring
consistent quality when combining multiple
information sources. These aren’t insurmountable,
but they require thoughtful design and often some
trial and error.

The field continues to evolve rapidly. Standards like
MCP are gaining adoption, making integration easier.
Agent frameworks are becoming more reliable and
easier to use. Costs are dropping as competition
increases and efficiency improves. New patterns and
best practices emerge regularly as more
organizations deploy these systems.

Making Augmentation Decisions

The decision to augment should be driven by clear
needs rather than technical possibilities.

Augmentation makes sense when you need current
information the base model lacks, when you have
valuable proprietary data to leverage, when AI needs
to take actions rather than just provide information,
when accuracy is crucial and must be grounded in
verified sources, or when building production
systems that need to remain useful over time.

Sometimes simpler approaches work better. If
general knowledge suffices for your use case, if
you’re brainstorming rather than executing, if speed
and cost matter more than perfect accuracy, or if
you’re still exploring what’s possible, starting with
basic models might be the right choice. You can
always add augmentation later as needs become
clearer.

The Integration Journey

Success with augmentation usually follows a gradual
path. Organizations start with simple context
injection for specific use cases. They might add RAG
for searching internal documents once they see the
value. Function calling comes next for common
operations. Eventually, they might build
sophisticated agent systems for complex workflows.
Each step builds on previous experience and
validated need.

The beauty of building your own stack is its
adaptability. As better components become
available, you can upgrade individual pieces without

rebuilding everything. As your needs evolve, your
system can evolve with them. You’re not locked into
any vendor’s vision of how AI should work – you
create the system that works for you.

Augmentation transforms AI from an impressive but
limited conversationalist into a genuinely useful
assistant. It bridges the gap between AI’s trained
knowledge and the dynamic, specific information
needed for real-world applications. While the
technology continues to evolve rapidly, the
fundamental patterns we’ve explored provide a solid
foundation for building systems that deliver real
value.

In our final chapter, we’ll explore how to ensure
these powerful augmented systems remain reliable,
safe, and aligned with your goals over time.

Chapter 6: Evaluation &
Monitoring – Keeping AI on Track

The Long Game

Building an AI system is one thing. Keeping it useful,
accurate, and safe over time is another challenge
entirely. This final layer is about quality control,
continuous improvement, and making sure your AI
assistant doesn’t gradually transform into an
unreliable loose cannon.

Think about any tool or system you use regularly.
Without maintenance and monitoring, things decay.
Software accumulates bugs, processes become
outdated, and what worked yesterday might fail
tomorrow. AI systems face these same challenges,
plus some unique ones of their own.

Measuring What Matters

When you buy a car, you look at specifications like
horsepower, fuel efficiency, and safety ratings. With
AI, we need similar metrics, but they’re less
straightforward. How do you measure something as
subjective as “helpfulness” or as complex as
“reasoning ability”?

The AI industry has developed two main approaches.
First, we have automated metrics that computers
can calculate quickly. Perplexity measures how
surprised the model is by text – lower surprise
generally means better understanding. For tasks like
translation or summarization, we can compare AI
output to human-written references using scores like
BLEU or ROUGE. These automated metrics are
useful for quick checks, but they only tell part of the
story.

The gold standard remains human evaluation. Real
people judge whether responses are coherent,
relevant, helpful, and appropriate. This takes more
time and money than automated metrics, but
captures nuances that algorithms miss. A response
might score perfectly on automated metrics while
being completely unhelpful to actual users.

The Benchmark Olympics

The AI world loves standardized tests. Every new
model release comes with claims about beating

previous records on various benchmarks. MMLU
tests general knowledge across dozens of subjects.
HellaSwag measures common sense reasoning.
HumanEval checks coding ability.

These benchmarks serve a purpose – they let us
compare models objectively and track progress over
time. But they also have serious limitations. Some
models seem suspiciously good at specific
benchmarks, raising questions about whether
they’ve been optimized to ace the test rather than
develop genuine capabilities. It’s like teaching to the
test in schools – good scores don’t always mean real
understanding.

More importantly, benchmark performance often has
little correlation with real-world usefulness. A model
might score brilliantly on academic tests while failing
at practical tasks your business actually needs. This
is why smart organizations create their own
evaluation sets based on actual use cases rather
than relying solely on public benchmarks.

Safety: The Essential Layer

AI safety isn’t optional anymore. These systems learn
from vast amounts of internet text, which means
they’ve absorbed humanity’s biases,
misconceptions, and worse. Without careful
evaluation and mitigation, AI can perpetuate
stereotypes, generate harmful content, or give
dangerously wrong advice.

Bias detection has become a crucial part of AI
evaluation. This means checking whether models
treat different groups fairly, avoid stereotypes, and
don’t perpetuate historical prejudices. It’s not just
about avoiding obvious discrimination – subtle
biases can be equally harmful and much harder to
detect.

Red-teaming takes this further. Security experts and
ethicists actively try to break AI systems, finding
ways to make them generate harmful content or
reveal sensitive information. It’s like hiring ethical
hackers to test your cybersecurity, except they’re
probing for logical vulnerabilities rather than
technical ones. The goal is finding problems before
malicious users do.

Guardrails provide the final safety layer. These are
filters and controls that sit between the AI and users,
blocking harmful requests and responses. Modern
guardrails are sophisticated, catching not just
obvious problems but subtle attempts to manipulate
the system. The challenge is making them strict
enough to ensure safety while not being so restrictive
that they prevent legitimate uses.

Production Monitoring: Keeping Watch

Launching an AI system is just the beginning. The real
work starts when actual users begin interacting with
it at scale. Production monitoring tracks several

critical aspects that determine whether your AI
continues to deliver value.

Performance metrics tell you if the system is meeting
user needs. Response times, error rates, and task
completion rates provide quantitative measures. But
qualitative feedback matters just as much – are
users satisfied with the responses they’re getting?
User feedback mechanisms, from simple thumbs
up/down to detailed surveys, help track satisfaction
over time.

The world changes constantly, and AI systems can
suffer from what we call drift. Data drift occurs when
the types of queries users send start differing from
what the model was trained on. Concept drift
happens when the meaning or context of things
changes – imagine an AI trained before COVID trying
to understand “social distancing” or “zoom fatigue.”
Regular evaluation catches these issues before they
seriously impact performance.

Cost monitoring might seem mundane but becomes
critical at scale. AI API calls add up quickly,
especially with sophisticated models and
augmentation features. Tracking costs by user,
feature, and use case helps identify optimization
opportunities and prevents budget surprises.

Explainability: Opening the Black Box

One of AI’s biggest challenges is explaining its
decisions. When a model gives an answer, can it tell
you why? This isn’t just academic curiosity – in many
industries, explainability is a legal requirement.
Financial services need to explain credit decisions.
Healthcare systems must justify diagnostic
recommendations.

Modern techniques can provide various levels of
explanation. Attention visualization shows which
parts of the input most influenced the output.
Feature attribution identifies key factors in decisions.
Some models can even generate natural language
explanations of their reasoning process.

The challenge is balancing explainability with
capability. Often, the most powerful models are the
least explainable, while simpler models that we can
fully understand have limited capabilities. Finding
the right balance depends on your specific use case
and requirements.

The Continuous Improvement Cycle

Evaluation and monitoring aren’t one-time activities.
They’re part of a continuous cycle that keeps AI
systems relevant and reliable. Regular evaluation
identifies problems and opportunities. Monitoring
catches issues as they emerge. Updates and

improvements address what you’ve learned. Then
the cycle repeats.

This iterative approach is especially important
because both AI technology and user needs evolve
rapidly. The model that perfectly served your needs
six months ago might be outdated today. New
models with better capabilities appear constantly.
User expectations rise as they become more familiar
with AI. Regulations and safety standards evolve.

Building Your Evaluation Framework

Every organization needs its own evaluation
framework tailored to its specific needs. Start by
identifying what really matters for your use cases. If
you’re using AI for customer service, response
accuracy and tone might be critical. For internal
research tools, comprehensiveness and source
citation could matter more.

Create evaluation sets based on real examples from
your domain. Include edge cases and difficult
scenarios, not just typical queries. Regular testing
against these sets helps you track performance over
time and quickly identify when updates cause
regressions.

Establish clear monitoring dashboards that track
both technical metrics and business outcomes.
Response times and error rates matter, but so do
user satisfaction scores and task completion rates.

Connect AI performance to actual business impact
whenever possible.

Most importantly, build feedback loops that connect
users, developers, and stakeholders. Users provide
the most valuable insights about what’s working and
what isn’t. Developers need this feedback to improve
systems. Stakeholders need visibility into both
successes and challenges.

The Reality Check

Perfect AI doesn’t exist. Every system will make
mistakes, show biases, and occasionally fail in
unexpected ways. The goal isn’t perfection but
continuous improvement and risk mitigation. Good
evaluation and monitoring help you catch problems
early, understand their impact, and respond
appropriately.

This is why Layer 6 might be the most important of
all. Without proper evaluation and monitoring, you’re
flying blind. You won’t know if your AI is helping or
harming, improving or degrading, worth the
investment or wasting resources. With good
evaluation and monitoring, you can build AI systems
that deliver real value while managing risks
responsibly.

The six layers we’ve explored work together to create
capable, reliable AI systems. Understanding each
layer helps you make better decisions, whether

you’re choosing tools, building systems, or simply
trying to use AI more effectively. The technology will
keep evolving, but these fundamental concepts
remain your guide to navigating the AI landscape
successfully.

Bonus: Staying in Control

Don’t Let AI Platforms Own Your Work

Here’s something that might sound paranoid but will
save you grief: assume every AI platform you use will
either shut down, drastically change their terms, or
lock you out tomorrow. Because some of them will.

I’ve watched people build their entire workflows
around ChatGPT’s chat history, Claude’s project
feature, or some startup’s “revolutionary” AI writing
app. Then the service changes, or their credit card
fails to process, or the company pivots, and suddenly
months of work is trapped behind a login screen they
can’t access.

This isn’t theoretical. AI companies are burning
through cash, getting acquired, changing strategies.
The hot new platform everyone’s using today might
not exist next year. Or it might exist but cost 10x

more. Or delete your history after 30 days unless you
pay for premium.

The Markdown Solution

My solution is almost embarrassingly simple: I keep
everything in plain text files, specifically Markdown
format. Not because I’m technical (Markdown is just
plain text with a few simple symbols), but because
it’s the most portable format that exists.

Here’s what my setup looks like:

• A folder called “AI-Work” on my computer
• Subfolders for different types of content (bios,

project descriptions, LinkedIn posts, prompts
that work well)

• Everything saved as .md files (which are just
text files with different extension)

That’s it. No special software. No cloud subscription.
No proprietary format.

Why Markdown Works

Markdown is just text with minimal formatting marks:

• # Title for headings
• **bold** for emphasis
• - item for lists
• Regular paragraphs need no marks at all

Every AI system can read it. Every computer can open
it. You can edit it in Notepad, TextEdit, or any phone
app. It’ll still be readable in 20 years when today’s AI
platforms are digital archaeology.

More importantly, you can instantly feed your
content to any AI system. Testing a new model?
Copy, paste, go. Want to compare how three
different AIs handle your content? Copy, paste three
times. No export process, no formatting issues, no
begging for your data back.

My Actual Workflow

I keep files like these ready at all times:

• bio.md: Different versions of my bio (short,
medium, long)

• linkedin-posts.md: Last 18 months of posts,
easy to analyze or repurpose

• project-descriptions.md: Standard
descriptions I can quickly modify

• prompt-library.md: Prompts that
consistently work well

• meeting-notes/: Folder with dated files for
each significant AI session

When I use any AI system, I:

8. Copy relevant context from my files
9. Paste into whatever AI I’m testing

10. Save any useful outputs back to my files
11. Never rely on the AI platform to remember

anything

The Payoff

This approach has saved me multiple times:

• When ChatGPT’s history got wiped during an
update

• When a startup AI writing tool I was testing
shut down with 48 hours notice

• When Claude’s project feature hit its limit and
started deleting old content

• When I wanted to switch from GPT-4 to
Claude for a specific project

But the biggest benefit? I can instantly test new AI
systems. When Google releases a new model, I can
evaluate it in minutes with my standard test content.
When a client asks “have you tried X?”, I can give
them a real answer based on actual testing, not
marketing materials.

Beyond Text

The same principle applies to everything:

• Images: Save originals and prompts
separately

• Code: Keep it in plain files, not locked in AI
platforms

• Research: Download important responses as
text/PDF

• Conversations: Export anything valuable
immediately

The One-Hour Investment

Set this up once:

1. Create a folder called “AI-Work” (or whatever)
2. Create a few starter files with your common

content
3. Get in the habit of saving important stuff

immediately
4. That’s it

You don’t need to learn Git, use special software, or
become technical. Just save text files. It’s almost
stupidly simple, which is why it works.

The Real Point

AI platforms want to be sticky. They want you
dependent on their interface, their features, their way
of doing things. That’s their business model. But your
business (or life) shouldn’t be held hostage by their
business.

Use whatever AI platforms you want. Try them all. But
keep your work, your ideas, and your content in
formats you control. Because the only constant in AI

right now is change, and the only way to stay flexible
is to stay independent.

When the next “game-changing” AI platform
launches next week (and one will), you’ll be ready to
test it properly. When your current favorite platform
inevitably changes in ways you don’t like, you’ll
switch without losing anything.

That’s what being in control actually looks like. Not
avoiding these platforms, but using them on your
terms.

About the Author
Uli Hitzel is a digital technologist with over two
decades of experience at companies including
Yahoo, Microsoft, IBM, and Dyson. He is the founder
of Electric Minds, a non-profit AI initiative bringing
together diverse stakeholders to solve complex
challenges through collaborative innovation. Since
2020, Uli has been a Fellow at the National University
of Singapore, where he teaches AI and technology
courses. Based in Singapore, he is passionate about
making AI accessible and practical for both technical
and non-technical professionals.

Glossary

A

Agent Frameworks: Software that helps AI
coordinate complex, multi-step tasks. Think of them
as project managers for AI – breaking down big goals,
choosing the right tools, and handling errors when
things go wrong.

API (Application Programming Interface): The
direct line to AI models, bypassing all the packaging
of chat apps. Send a request, get a response, with
full control over all the settings.

API Key: Your secret password for accessing AI
services. Like a phone number that only you should
know.

Attention Mechanism: The Transformer's
breakthrough feature that lets AI understand how
words relate to each other across entire sentences.
Every word can "look at" every other word
simultaneously.

Augmentation: Giving AI superpowers beyond its
training – access to current information, databases,
tools, and the ability to take actions in the real world.

Autoregressive Generation: How AI writes – one
token at a time, with each new token based on
everything that came before. Like building a sentence
where each word must fit perfectly with all previous
words.

B

Base Models: The wild, untamed version of LLMs.
Trained on massive text but not taught manners. They
complete text rather than follow instructions, and
might say anything.

Batch Inference: Processing multiple AI requests
together. Efficient but not real-time.

Benchmarks: Standardized tests for AI models
(MMLU, HumanEval, etc.). Useful for comparison but
often poor predictors of real-world usefulness.

Bias (in AI): Unfair prejudices AI learns from its
training data. A major safety concern requiring active
detection and mitigation.

C

Chain-of-Thought (CoT): A prompting technique
where you ask AI to "think step by step." Often

dramatically improves performance on complex
problems.

Claude: Anthropic's family of AI models, known for
thoughtful responses and strong safety features.
Comes in Opus (powerful), Sonnet (balanced), and
Haiku (fast) versions.

Closed-source Models: AI models accessed only
through APIs, where the weights and training details
are kept secret. You rent, not own.

Context Window: How much text an AI can "see" at
once – including your prompt, conversation history,
and its response. Like the size of the AI's desk.

Concept Drift: When the world changes but your AI's
knowledge doesn't. A model trained in 2023 won't
know about events in 2024.

D

Data Drift: When the types of questions users ask
start differing from what the model was trained on.

Decode Phase: The second part of inference where
AI generates its response token by token.

Decoder-only Architecture: The design used by
most modern generative AI (GPT, Claude, Gemini).
Optimized for generating text rather than translating
between languages.

E

Embeddings: Mathematical representations of text
meaning. How AI converts words into numbers it can
search and compare.

End-of-Sequence (EOS) Token: The special token
that tells AI to stop generating. Without it, AI would
ramble forever.

Evaluation: Systematic assessment of AI
performance, safety, and reliability. The quality
control department for AI.

F

Few-shot Prompting: Providing examples in your
prompt to show AI exactly what you want. Like
teaching by demonstration.

Fine-tuning: Continuing to train a pre-trained model
on specialized data. Taking a generalist and making it
an expert in your specific domain.

Full Fine-tuning: Retraining all parameters of a
model. Powerful but expensive – like sending
someone back to university.

Function Calling: Giving AI the ability to use tools
and take actions. Transforms AI from a thinker to a
doer.

G

Gemini: Google's family of AI models. Includes Pro
(powerful) and Flash (fast and efficient) versions.

GPT (Generative Pre-trained Transformer):
OpenAI's model family. GPT-4 remains highly
capable despite newer releases.

Guardrails: Safety filters that block harmful AI inputs
or outputs. The safety fence around AI systems.

H

Hallucination: When AI confidently makes things up.
A fundamental challenge since AI generates
plausible-sounding text whether it's true or not.

Human Evaluation: The gold standard for assessing
AI quality. Automated metrics help, but humans
judge what really matters.

I

Inference: The process of using a trained model to
generate responses. What happens when you
actually use AI.

Instruct Models: LLMs fine-tuned to follow
instructions helpfully and safely. The polite, helpful
versions of base models.

Instruction Fine-tuning: Teaching models to follow
commands through examples of good behavior. How
wild base models become helpful assistants.

K

Key (K): In attention mechanisms, represents "what
information do I have to offer?" Part of the Query-Key-
Value system.

KV Cache: Optimization that stores previous
calculations during text generation. Why AI can
maintain long conversations efficiently.

L

LangChain: Popular framework for building AI
applications, especially those using RAG or agents.

Large Language Model (LLM): AI systems trained on
massive text datasets to understand and generate
language. The technology behind ChatGPT, Claude,
and others.

LLaMA: Meta's family of open-source models.
Democratized AI by making powerful models freely
available.

LoRA (Low-Rank Adaptation): Efficient fine-tuning
technique that adds small "adapter" modules
instead of retraining the whole model. Like Post-It
notes on encyclopedia pages.

M

Max Tokens: Limit on how much text AI can generate
in one response. Prevents infinite rambling.

MCP (Model Context Protocol): Anthropic's
universal standard for how AI connects to tools and
data. Like USB-C for AI integrations.

Multi-Head Attention: Running attention
mechanisms multiple times in parallel, each
focusing on different aspects (grammar, meaning,
tone, etc.).

Multimodal Models: AI that handles multiple types
of input/output – text, images, audio, video. Not just
reading and writing anymore.

O

Open-source Models: Models with publicly available
weights you can download and run yourself. Full
control but requires your own hardware.

Output Control Parameters: Settings that shape AI
responses – temperature, top-p, max length, etc. The
dials and knobs for fine-tuning output.

P

Parameter-Efficient Fine-Tuning (PEFT):
Techniques for adapting models by training only a
small fraction of parameters. Gets 95% of results
with 5% of the effort.

Parameters: The billions of numbers inside a model
that encode its knowledge. More parameters
generally means more capability but also more cost.

Perplexity: Metric measuring how "surprised" a
model is by text. Lower is better – indicates better
understanding.

Positional Embeddings: How AI remembers word
order when processing everything simultaneously.
Like seat numbers at a theater.

Prefill Phase: First part of inference where AI rapidly
processes your entire prompt to understand context.

Prompt Engineering: The art and science of crafting
effective AI inputs. Learning to speak AI's language.

Prompting: The basic act of giving instructions to AI.
The quality of your prompt largely determines the
quality of the output.

Q

QLoRA: Even more efficient than LoRA – compresses
the main model while adding adapters. Maximum
efficiency for fine-tuning.

Quantization: Reducing model precision to save
memory and increase speed. Like compressing a
photo – slightly lower quality but much smaller file.

Query (Q): In attention mechanisms, represents
"what information am I looking for?" Works with Keys
and Values.

R

RAG (Retrieval-Augmented Generation):
Automatically finding and injecting relevant
information into AI prompts. Like giving AI a research
assistant.

Rate Limits: Restrictions on how many API requests
you can make. Prevents overwhelming the service.

Reasoning Models: Latest evolution of AI that can
work through problems step-by-step and check their
own logic. Think before they speak.

Red-teaming: Security experts trying to break AI
safety features. Ethical hacking for AI systems.

Reinforcement Learning from Human Feedback
(RLHF): Teaching AI to be helpful by learning from
human preferences. How models learn manners.

S

Stop Sequences: Specific text that makes AI
immediately stop generating. The emergency brake.

Streaming: Getting AI responses word-by-word as
they're generated. Like watching someone type
rather than waiting for the full message.

Supervised Fine-Tuning (SFT): Training models on
labeled examples. The foundation of most fine-
tuning efforts.

System Prompt: Hidden instructions that shape AI
behavior throughout a conversation. The personality
and rules you never see in chat apps.

T

Temperature: Controls randomness in AI responses.
Low = predictable and safe. High = creative and wild.

Token: The basic unit AI processes – usually parts of
words. "Unbelievable" might be "un-believ-able" in
tokens.

Tokenization: Breaking text into tokens. How AI
converts human language into something it can
process.

Top-P (Nucleus Sampling): Another randomness
control. Affects vocabulary diversity rather than
overall wildness.

Transformer Architecture: The revolutionary design
behind all modern LLMs. Enables understanding of
long-range word relationships.

V

Value (V): In attention mechanisms, the actual
information content. Works with Queries and Keys to
create understanding.

Vector Database: Specialized storage for
embeddings. Enables semantic search – finding
documents by meaning, not just keywords.

Z

Zero-shot Prompting: Asking AI to do something
without providing examples. Just throwing a question
and hoping for the best.

